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FOREWORD

High water and waves accompanying storms of hurricane intensity
have periodically caused great damage along the Atlantic and Gulf coasts
of the United States, Damage figures have risen with each succeeding
great storm as more and more development of the shore areas has been
made, reaching, for example, an estimated 200 million dollars in the
Narragansett Bay area (including Providence, Rhode Island) for the 1954
hurricane Carol, Adequate, and economic, design of shore structures
to prevent or mitigate this damage requires accurate prediction of
water levels for possible future storms, Complete understanding of
the development of storm surges along an open coast has not yet been
realized although considerable progress in gaining a workable under-
standing is now being made, One of the factors involved in such com=-
putations is the effect of bottom roughness and the resultant bottom
shear stress on the flow of water into and through an estuary, and
consequently the final water elevation around the shores of the estuary
due to hurricane surge and/or associated wind set-up, The steady
state case, with zero mean flow in this report,is treated as a special
case of the general theory, and the ratio between bottom stress and
surface stress is found to depend upon the ratio of depth to bottom
roughness, and is generally less than about 0,1,

The report was prepared at the Agricultural and Mechanical College
of Texas by Robert O, Reid, an Associate Professor at that institution,
in pursuance of contracts between the Texas A&M Research Foundation and
the Beach Erosion Board (contract DA=49-055=Civ-eng=56=4) and the U, S,
Weather Bureau (contract Cwb=8717), The work has been Sponsored by
the Corps of Engineers and the Weather Bureau as a part of their re-
sponsibilities in hurricane damage prevention, warning, and prediction,
as outlined in Public Law 71, 84th Congress and Public Law 657, 80th
Congress, The funds supplied by the Corps of Engineers were supplied
through the New England Division as a part of a comprchensive study of
hurricane prevention for the southern New England shore, The funds
supplied by the Weather Bureau were from increased appropriations made
for severe storm research during fiscal year 1956,

Views and conclusions stated in this report are not necessarily
those of the Beach Erosion Board or the U, S, Weather Bureau,

This report is published under authority of Public Law 166, 79th
Congress, approved July 31, 1945,
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LIST OF SYMBOLS

parameter which depends upon m and r (eq 11)

parameter which depends upon m and r1 (eq 11)

depth of channel

function of m defined for negative m only

function of m defined for positive m only

acceleration of gravity

a correction term in the fitted formula for m; depends
upon a only

the von Karman dimensionless constant, 0.40

ko(l tro+ rl), very nearly equal to ko

1nge

mixing length

mixing length at the rough bottom

mixing length at the free surface

ratio of'Z'S to Tb with appropriate sign

absolute value of m for the case of equilibrium set-up in
a bounded channel

Manning's n (units of [L]l/6 ), an empirical channel bed
roughness parameter

ratio of ZO to D, a very small quantity

ratio of Z1 to D, a very small quantity

surface slope

temporal mean velocity at level z in the x direction

temporal mean velocity at the surface

relative velocity U/AV/_¥_—___

Uatl < Eni for the cisélé?Pnegative m

Uatl > Crn for the case of negative m

U at g = gnl (maximum relative velocity for the case of

negative m)

relative surface current

mean current, averaged over the entire depth of the channel
+ qts|/pwhere the sign is taken consistent with that of T
s



relative mean current v/v*

V as defined by the asymptotic relation (42)

value of V for the case of m = 0 depends upon I)/Z0 {or 7b)

value of V for the case of m = 1, depends upon D/Zo (or'rb)

surface of wind speed

dimensionless variable which depends upon [ and m (eq 11)

elevation above bottom (distance from the boundary)

characteristic roughness length for the bottom

characteristic roughness length for the free surface

a dimensionless parameter in the fitted formula for m.

non=-dimensional proportionality factor which depends upon
bottom roughness and channel dimensions

dimensionless elevation Z/D

value of [ at the position i maximum subsurface current
for the case of negative m

density of the water

shear stress (force per unit area) exerted at level z by
the upper fluid on the fluid below this level

shear stress exerted on the bottom by the water

Shear stress exerted by the air on the upper surface of the

water



MODIFICATION OF THE QUADRATIC BOTTOM=STRESS LAW FOR TURBULENT

CHANNEL FIOW IN THE PRESENCE OF SURFACE WIND-STRESS
by

R, O, Reid
Associate Professor of Oceanography
ASM College of Texas

ABSTRACT

The simple quadratic formula for stream bed resistance is
inadequate when an appreciable wind stress exists at the surf(ace
of the stream, In the present paper a generalized formula for
velocity profile and bottom stress is derived which takes the in=-
fluence of surface stress into account, The theory applies to
quasi-steady flow over a hydrodynamically rough stream bed and
makes use of Montgomery's (1943) generalization of the Prandtl-
von Karman mixing length theory, where both stress and mixing
length are continuous functions of elevation, from the stream
bed to the surface, The simple quadratic law (eq, 1) is a
special case of the general formula for bottom stress (eqs.40a,b)
and (4la,b), or (43) through (45)), and represents in effect an
asymptotic form which applies when the mean stream velocity is
very large relative to the surface stress, The bed resistance
coefficient ¥, 2 (eq. (30)) is a characteristic parameter of the
general and sBecial formulas and depends upon the depth and von
Karman roughness scale (z,), The latter quantity is related to
Manning's n value, In general, the effect of the wind stress
is such that, for a given current, the effective resistance to
the flow is reduced for a following wind and increased for an
opposing wind, relative to the resistance which exists in the
absence of the surface stress.

The special case of zero mean flow, in the presence of a
surface stress, is treated as a special case of the general
theory, The ratio between the bottom stress and surface stress
(eq., (37) or (40)) depends upon the ratio of depth to the bottom
roughness scale, and is found to be gererally less than 1/10,
which is at least in qualitative agreement with the available
data pertinent to this problem (Van Dorn, (1953); Francis
(1953)),



INTRODUCT ION

For turbulent flow in an open channel, the shear stress b
(tangential force per unit area) exerted by the fluid on the channel
bed (and sides) is asserted to be of quadratic form in respect to some

gross velocity parameter; specifically
2
Ty =P% VIV (1

where v is the average current for the cross-section of the channel
concerned, p the density of the water and:ybz is a non=-dimensional
proportionality factor* which depends upon the bottom roughness and
channel dimensions (and shape), The stress is directed with the

velocity (i,e,, T _ takes the sign of v as indicated by eq, (1)),

The above assumptign regarding the stress leads to the well established
result that, under conditions of steady stream flow in a uniform channel,
the mean current, hence the stream discharge through a given cross=-
section, is proportional to the square root of the surface slope along
the axis of the channel (cf,, Rouse, 1946, p, 217),

In tidal hydraulics eq. (1) is also used to evaluate the damping
of seiches and long surges in channels (Proudman, 1955; Dronkers and
Schonfeld, 1955; Ichiye, 1955), 1In both problems above (streaming flow
and surging) it is understood that no surface stress occurs (or is
negligible compared with bottom stress) and that as a consequence, the
flow in the channel is very nearly uniform with respect to depth except
very near the stream bed where a large velocity shear occurs, giving
rise to the stress adjacent to the bed,

Turn next to the situation of a steady set-up of water in a bay
or lake caused by a strong, sustained wind, In this case there is no
net flow (v = 0), however a wind=induced current must occur near the
surface requiring a return flow near the bottom to compensate for the
surface flow (Hellstrom, 1941; Forssblad, 1947; Holmgren, et, al,, 1944),
A typical profile of such flow conditions is given in Figure 1, A
detailed discussion of this graph is deferred until later. It is
apparent that for flow of this type, the stress exerted by the fluid

on the bottom is directed in the opposite sense to that of the wind,

2
2. 2 . y
*The term is not to be confused with the wind resistance coefficient

fog the free water surface, Actuallyy 2 is one-eighth of the Darcy=-
Wexsbagh coefficient commonly employed ?n conduit flow (Rouse, 1946,
p. 201),



Furthermore, for a given channel the bottom stress under steady set-up
conditions depends upon the wind stress only, Several theoretical
studies dealing with this problem (Boussinesq, 1877; Hellstrom, 1941;
Keulegan, 1951; Kivisild, 1954) have been made and a few direct measure-
ments of the bottom stress under such conditions have been attempted,
All of the theories indicate that for a given bottom roughness and
depth, the bottom stress is proportional to the wind stress, The various
theories differ widely in regard to the factor of proportionality, The
measurements indicate that the ratio of the bottom stress to surface
stress is of the order of 1/10 or less (Van Dorn, 1953), Most of the
theoretical values for this ratio are higher, with the exception of the
results given by Kivisild (1954, p, 77). In any event the bottom stress
under the condition of zero net flow can have a signif icant influence

on the slope or set-up of water in a channel, and acts so as to enhance
the effect of the wind by impeding the subsurface return flow,

Obviously eq (1) fails completely for evaluating bottom stress in
the problem of sustained wind-induced set-up of water, The equation
could apply if the velocity v is reinterpreted as that which occurs
at a small distance above the bottom, However the fact still remains
that this velocity depends entirely upon the wind stress, for a given
channel, and therefore so does the bottom stress,

Consider now the problem of evaluating the bottom stress in a f low=-
ing stream in the presence of a surface wind stress. If a strong wind
acts in the direction of the stream, then a rapid decrease of velocity
with depth must occur in the upper layers (Fig, 2A), This leads to the

result that, for a given discharge, the velocity shear near the bottom

is less than what it would be in the absence of the wind and hence the
magnitude of the bottom stress is less than that predicted by eq (1),

On the other hand if the wind acts against the flow then there will be an
increase of velocity with depth in the upper layers, giving rise to a
maximum velocity at some sub=surface level (Pig, 2B), The result in

this case is that, for a given discharge, the velocity shear near the

bottom must be greater than that which occurs in the absence of the

wind stress and the bottom stress is accordingly greater in magnitude
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than that given by eq (1), Thus the bottom stress under conditions of
steady flow in a given channel must depend in general upon the wind stress
as well as the volume discharge (or mean current), The situations of -
steady, river=flow in the absence of wind stress, and the flow associated
with steady, wind induced set=-up in a partially enclosed channel are
simply special cases of the general problem,

A generalization of the mixing length theory of Prandtl and von
Karman is utilized in the present investigation to arrive at a generalized
formula for the bottom stress which is consistent with the limiting cases
mentioned, and yields a quantitative measure of the combined effect of
wind stress and mean current which was discussed, The theory applies to
steady flow in the presence of a sustained, uniform wind-stress, the
mean current (or discharge) and wind stress being considered as independent
variables,

The necessity of a generalized bottom=stress formula arises in the
problem of evaluating wind induced water level changes in tidal waterways,
This problem obviously does not involve steady uniform flow in the channe’
or channels concerned, Nevertheless the theory for bottom stress based
upon such assumptions is valid in the first approximation for slowly
changing conditions and is certainly an improvememt over eq (1) when a
significant wind stress exists,

THEORY

Under steady flow conditions in a wide channel* of uniform cross-
section, the vertical gradient of stress is independent of depth, That
is
& = ogs # £(2) (2)
where s is the surface slope, g the acceleration of gravity, p the
density of the water (considered uniform), z the elevation above bottom,
and T the tangential stress exerted at level z by the upper fluid on the
fluid below this level (positive in the direction of the longitudinal
coordinate x), Thus if Ts is the stress at the free surface,'rb the
bottom stress, and D the depth of fluid, then it follows from (2) that

6

*Here we imply that the width is very large compared with the mean depth,
The present theory does not take into account variations of stress across
the channel, and the depth is considered as essentially constant across
the channel, The influence of cross-section shape on flow characteristics
in open channels is discussed by Keulegan (1938),



Z
r=rb¢(rs-rb) D (3)

where pgs is replaced by the equivalent quantity (rs -'rb)/D. The
channel is considered wide enough that the side stress is of minor
importance,

Following Prandtl and von Karman (cf,, Bakhmeteff, 1936; Brunt,
1941, p, 244=46) the stress under conditions of turbulent flow is pre-
sumed to be related to the velocity shear as follows

2 ;d d
Te L° | EE 3% (4)

where u is the temporal mean velocity at level z in the x direction
(along the channel axis), The mixing length L for flow in a semi-infinite
fluid adjacent to a flat plate is considered as a linear function of
distance from the plate:

L=k (z+2z2) , (5a)
o o

where z is the distance from the boundary, ko is a dimensionless constant,
and z is a characteristic roughness length for the surface*, Experi-
mental data indicate that the von Karman constant ko is independent of
the nature of the surface and has a value of approximately 0,40 (Rouse,
1946, p., 192), PFor flow in a channel or pipe wherein the boundary is

not a simple plane and the cross~-sectional area of fluid transverse to

the flow is of limited extent, we cannot expect the simple relation (5a)
to hold except very close to the boundary,

Montgomery (1943) has suggested a general formula for evaluating the
distribution of L within a closed or open channel cross-section of any
configuration, For flow in a semi=infinite fluid over a flat plate,
the general formula leads to eq (5a), while for flow in a pipe Montgomery's
hypothesis yields a non-linear dependence of L on radial distance from
the pipe axis and leads to better agreement with data than the usual

linear relation, provided that the stress is considered as a continuous

7

* The roughness parameter z_ is a small fraction (of the order of 1/10)
of the mean diameter of tﬂe roughness elements, In the present paper

we restrict the analysis to hydrodynamically rough surface conditions
only.



functions of distance from the axis of the pipe* , Por the case of flow
in a wide channel with a free surface, the generalized mixing length
hypothesis of Montgomery leads to the following quadratic form for the
mixing length

k

L = 59 (z + zo) (De 2z -2z2), (5)

1
where z, is a characteristic roughness length for the channel bed and

z, is a similar characteristic parameter for the free surface, The

parameter z1 is related to the wind induced waves on the surface, It
will be considered throughout the present investigation that zo and z1
are very small relative to D, In this case eq (5) reduces essentially

to eq (5a) very near the bottom, while near the free surface eq (5)

reduces to a similar linear approximation:

Lek [(D=-2)+2z], (5b)

(D-z) being the distance below the free surface, These two asymptotic
relations and the general relation (5) are illustrated in Fig, 3, where

the values Lo and L  are very nearly equal to koz0 and kozl,.respectively.

1

If the stress were uniform, then near the surface or bottom, where
the mixing length is nearly linear, the velocity distribution according
to eq (4) will obey the welll known log law (Rouse, 1946, p, 194), u
being a linear function of log z, This still holds approximately when
the stress varies; however, at intermediate depths the simple log law
is transcended,

In the evaluation of the velocity distribution from eq (4), using
the quadratic form of L given by eq (5) there are two gencral situations
which must be considered separately, The first situation is that for
which Tb and Ts are the same sign and the second where Tb and Ts are of
opposite sign, It is convenient to introduce the following dimensionless

variables to simplify the equations:

8

*Montgomery found that the best agreement was found with experimental
data by taking k0 as 0,45 with his generalized theory, However, to be

consistent wi?h the more widely accepted value 0,40, we will adopt the
latter value in the numerical calculations of this paper,



(2) U = -??—JL—-—
ﬁ/ S;p
(b) 'm =‘rb/Ts
< (c) g: z/D (6)
(d) r =z /D =<1
o o
k(e) r, = ZL/D << 1

In all cases (except where TS = 0) it will be umlerstood that the x
axis is taken in the direction of Ts' and the latter is therefore
always positive, In the case of a stress opposing the mean current, the
latter is taken negative,

Combining eqs (3), (4) and (5) and ir‘roducing the transformations

(6) leads to the following differential equations for the current;

du v[; + (1 = A;t'

= o if m> 0 (M
ar ko(:o+g)(1+rl-§)
4
(2) au Mm| - 1+ |m )C , if Mm< O
dg ko(ro+c) 0.+rl-C) C‘C
m
< (8)
du L e m )L - iml .
(b) - = ifm<o0
P ST R ESD A TD
where
_ Iml
Cm T 14 m ' (9)

which represents the relative elevation of the point of reversal of stress,
The distributions of U and T for the cases m > 0 and m < 0 are indicated
schematically in Fig. 4,

The solution of eq (7) is complicated by the fact that the form
of the solution depends upon the relative magnitude of m compared with ro
and T, The case of negative m (Tb negative) is complicated by the fact
that separate solutions are required above and below the point of stress
reversal; however, these solutions hold for all negative values of m,

The latter case will be treated first,
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VELOCITY DISTRIBUTION FOR NEGATIVE m

We require as a boundary condition that u and hence U be zero at
the bottom, Furthermore the velocity must be continuous at the relative
elevation C m® Under these conditions it can be shown that the solution

of eqs (8) are

1 By =Y -1y
U=-Um- — [Bo 1n 5T + 2B. tan Bl], forchm (10a,

ko O-o-y 1
and
1 -1 _y By =y
U=-Um-k——,- [2Botan B + B1 lnm],forc:»cm (10b)
o o 1
where . .
y =‘/Tm + (1 -m|
B =f|(l-m)r —ml
o o
4 ()
Bl=j|1+(1-m)r1|
A =
ko ko(l +r e rl) .
\
Bur thermore

u =-—1—;—[B lnE’—s)—.*—A/--—-lﬁ-2.Bta.n"1 -—I—m—-l-}, (12)
o Bo-m 1 B

which represents the relative velocity at the point of stress reversal

(Cm) and is therefore the maximum value of negative velocity (Pig, 4B),
since at this point the stress and hence the velocity shear are zero

(Fig, 4A), Inasmuch as ro and r1 are to be regarded as very small compared
with unity, the factor ko' can be replaced by ko without serious error,
Purthermore since |m| in most applications is much larger than ro or rl,
the above relations can be put in a more cnnvenient form, Por this

situation, the following approximations are applicable
(L +|ml )
B & In| + ———2
2 [Im]|
(13)
for |m|>> roe T,

1
B, 2 1+ 2 (1 + |ml)r1,



and neglecting terms of minor importance, eq, (12) takes the approxi=-

mate form
.1 4 |m| & -1 /—] (12a)
Um e - [ [m| In T+ miir 2 tan [m|
(o] (o]
for L1, << 1, m<0

The relative surface current as deduced from (10b) and the above approxi~-
mations is given by

4
1 -1 4| ml
Ys ™'k {1“ 0 R E, o = /"“".”‘“'[1“ 1+ |mpr
o 1 o

1 _1 (14)

+ 2 tan for LT, <<, m< 0

m :

where Us Ts/b ok ¥ is the surface current, Notice that, to the approxi=-
mation given, the value of Um is independent of r, (the free surface
roughness ratio); on the other hand Us depends rather critically upon £
as should be expected*, Some example velocity distributions evaluated from
eqs.(10a,b) and the approximations (13) and 12a) are shown in Fig, S,

MEAN CURRENT FOR NEGATIVE m

The mean current v is defined by
1 D
vE = udz (15)
Do
We will denote by V the relative mean current which can be determined

from the relation 1

- v -
vV & w5 " val (16)

0
In the case of negative m we must perform the integration in two parts

{m 1
V= Jo U dg +J'C u.df an

m

as follows:

where Ua and Ub are the functions given by eqs., (10a) and (10b) respectively
(for the method of integration see Appendix A), The result for negative

m is

1

V = o (1+ [Im|l) = Bo [tan

*Note that U_ approaches infinity as r  approaches zero, but the velocity
shear also approaches infinity at the surface in such a way that very
little effect is felt at subsurface depths due to a change in r,.

12
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where terms of very minor importance have been dropped. The inf luence
of the magnitude of r, on the mean current for example is virtually
nil (Appendix A),

If we consider again the case where Imlis much greater than r

then eq (18) approximates to

vt -E— 1+ /iml) -/Iml[tan"1

o

1 4 |mi
+ 3 1n s |m|)r;] K18a)

m|

Eq (18) or (18a) represents one of the desired equations relating mean
current, wind stress, and bottom stress for a given bottom roughness

anddepth; the cited equations apply only when T, £ is opposite in direction

b
to Ts (m < 0), We turn now to the case of positive values of the stress

ratio m,

VELOCITY DISTRIBUTION FOR POSITIVE m

Four separate solutions are required for positive values of m

accordingly as:
(A) 0gms /(1 «+r )
o o
(B) ro/(1+ r°)<s n< (1 + rl)/rl, m#¥1

.(C) mez1
(D) m> (1 + rl)/r1

It can be verified that the solutionsof eq (7) for these different con=

ditions are, for case A:
1 -1y -1 QZm
U=T7 ZBO [tan g~ -~ tan B ]
) o )
B, =y B, - /m
2 B1 + /m
1 5 1n [(y - Bo) ([m« Bo) ]
' -
ko o (y + Bo) ( /m Bo)
R (y - B)) (fm+ Bl)] ‘
1 (y + Bl) (fm- Bl) !

for case B:
U

(19b)




for the singular case C(Tb s Ts):

r 4; 1+r -{.
1 0 1
U= ¢+ [}“ - In 4= }. (19¢c)
o ) 1
and finally for case D
1 (B_=y) (B_+ Am)
U= k' 4B In 9 9
o ) (B0 +v) (Bo - Afm) '
(194)
+ 28 ta.n-1 y—-ta.n.‘l om
1 B1 Bo

where y, Bo' Bl’ k;. are defined by eq (11), In all cases the constant
of integration is taken such that U (hence the current u) reduces to zero
at the bottom ([ = 0),

It will be noted that in the special case of m » 0 eq (19a) and
(10b) each reduce to the form

ler 41/
U= ?1-.- +r, in 1 C - 21/r tan"1 (20)
o 1+ rl -1/ g ° ro

thus assuring a continuous transition from the case of negative m to

that of positive m*, Example velocity distribution for the case of
positive m, eqs (19), are compared with those for negative m in Pig., 5.
MEAN CURRENT POR POSITIVE m
Using eqs (19a) to (19d) in eq (16) yields the following equations

for the dimensionless mean current, V, under the condition that r, and r,

are very small (see Appendix A for details): for O s m g ro/1 1

- tem“1 i} H (21)

oo R ]

2 -1
V=T(—— (1-&)-Bo[tan
o - [o] [o]

for m>,r0/1+r0.m#1
(v + Bo) (1 +B)

Ve 72(—— (1 =y®) + 1/2 B_ 1n = (22)
o (vt - Bo) a - Bo)

and for m =1

1 4
VeyY =r1n;- (23a)

*Some question may arise here as to the applicability of the hydrodynamically

rough surface theory in the case of very small Tp (hence small m), WhenT
is less than a certain value it may be expected that a laminar sublayer de-

velops near the boundary, This possibility is not explored i
paper, and probably should be investigatedr > POy TR piEeent



For m exceeding (1 + rl)/r1 eq(22) is still an adequate approximation

(see Appendix A), Essentially the above approximations are very good as
2

long as r, and rl are less than about 10 o

When m >>x:0 then eq (22) approximates to the more convenient form

= 2 - . ;R A
V = ko (1 -4W) + 4T In T o=+ 1/2 47 In . (22a)

The range of V for m lying between O and T is quite small, For

m = 0, eq (18a) and (21) each reduce to the relation

1

VeV s T?;_ 1 - ,‘/ro tan ! (23)
o V?;
while for m = ro/(l + ro), eq (21) and (22) each reduce to
Ve —2— (1 -,fF) (24)
ko o’?

again assuring a continuous relation between V and m, Since we will be
concerned with values of £ < 1072 (zo < D/100) it follows that the

range in V, corresponding to 0 < m < ro » is less than about 6 percent

of VO. For this reason eqs (18a) and (22a) relating v, L and T are

of primary concern since they are applicable to almost the entire range of
the variables concerned, with the exception of very small m (of the order
of ro). Before discussing this relationship in detail we will examine a
few special cases of immediate interest,

STEADY FLOW IN THE ABSENCE OF SURPACE STRESS

In the case of Ts = 0, eq (10a) and eq (19b) reduce* to the

common form
u =+ }——\/IR 1ﬁ +r 1In ( . fo - i} At r° * Y
- ]
ko P o (4/14-:04-/\/1-C)(1/1+r0_1)

(25)
¢ 2417 tan™ ! '\/1:_-—,(:_ tan 1 1
A1 /rl
which in the case of very small ro and r1 approximates to
1 Tb - 4 -! + 1/2ro) 4
us=g# = in —_ (26)
o P (1 +AT=TF) £,

16

*In this case it is necessary to multiply eqs (10a) and (19b) by /T /o
before setting T equal to zero, S




where the signs in eqs (25) and (26) are taken to agree with that of
T Very near the bottom (L << 1) eq (26) approaches the simple form

bl
T Z 4+ Z
u s + L —"-‘2- 1n o (27)
- ko V o] z

(o}

witich will be recognized as the celebrated Prandtl-von Karman log law
for turbulent flow over a flat plate, when the stress is considered
uniform (Rouse, 1946, p, 195), This is of course only an approximation
since T decreases to zero at the free surface in the absence of wind,
The more general relation (25) or (26) must be used at large distances
above bottom, The velocity distribution based upon (25) for r = 10"'3
and r, = 1/3000 is shown in Rig, 6 (curve 1), The approximate relation
(27) is shown for comparison (curve 2), Also shown are the distribution
of current for the special cases .ts =+ Tb, for the same values of r
and Iy The full curve for Ts = 0 has an inflection very close to the
free surface, and above this inflection the slope reduces to zero in
order to satisfy the condition of zero stress at the surface, If r1

is taken as zero then the inflection point moves up to the surface, In
this case the slope at the free surface does not vanish but the stress
is zero since the mixing length is zero for vanishing Ty
The relation of more immediate concern is that connecting v and T

b
for the special case of Tg = 0, Equations (18a) and (22a) reduce to

the form

(1n :—- - 2) (28)

where again the sign is taken to agree with that of 'Tb. It follows
immediately from (28) that

2
Tp = PYp VIV s forT =0 (29)

where

-1

4D

Yp =k, (n —==-2) , (30)
(o}

Thus eq (1) is simply a limiting case of the more general relations (18a)

and (22a) when TS is very small compared with Tb « The dimensionless
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FIGURE 6
Comparison of computed relative currents u ,/ p/l -rblversus relative
elevation for the casest_=2*7T and Tt =0 (i,e,, m = * 1 and 0),

Computations are bised upgn r =510-3 and vy = 1/3000



parameter )’bz will hereafter be referred to as the bed resistance

coefficient and is a characteristic parameter of the channel, Note that

it varies only with the relative roughness of the channel bed (zo/D).
In computations of river discharge, Manning®'s empirical formula

is frequently used, It can be shown that his formula leads to the

following representation for )’b (Rouse, 1946, p, 217-138)*,

Y, = 3.82 an/° (31)

. 1/6 .
where Manning®s n has the units of (feet) . Comparing eqs (30) and
(31) we see that zo and Manning's n, representing different parameters
for characterizing the bed roughness, can be related by equating the two

expressions for'yb. This leads to the relation

] 0.105 (D/zo)1/6
. (32)
2 1/0 (an 22 _z)
o y A
(8]
1/6

where von Karman'®'s constant ko is taken as 0,40, A graph of n/z0
ver sus D/zo is shown in Pigure 7 (curve 1), It will be noticed that the
ratio n/zol/b lies in the range 0,053 to 0,066 for D/zO varying from 100

to 100,000, Thus for all practical purposes the ratio is nearly independent

of relative depth, If we adopt a mean value of 0,056, then n and zol/b
are related approximately as shown in Fig, 8, Furthermore using the
approximate relation
n & 0,056 zol/o (32a)
in eq (31) gives
1
75 % 0,214 (zO/D) 46 (33)

This relation is compared graphically with eq (30) in Fig, 7 (curves 3
and 2 respectively)., Any one of the parameters n, z0 s O yb can serve
as a fundamental frictional parameter which together with the depth D

characterize the particular channel concerned,

19

*Here the depth D is taken as equivalent to the hydraulic radius; this
is justifiable if the channel width is of the order of 100 times the
depth,
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Curve (2): the dimensionless factor Yb ver sus /z0 as deduced

from the present theory,

Curve (3): the approximate 1/6 power law relation for )’b using

the relation of Fig, 8 and Manning®s equation,
Curve (4): the bottom resistance coefficient 7, 2
(as obtained from eq. 30 or curve (2)),

b

ver sus D/zo

100
L ----""-- :J
—_—— curve (D
B ‘-—“-"--..., / _'____'_____.—7—1-‘|
— ---......_______-_ . . =
— ) = CURVE (@) -
- \‘—&
L CURVE 7:
@ nrzd’® vs. 0720, EQ. (32) CURVE (3
— @ Yy VvS. D/2o, EQ. (30) —
(® APPROX. Y}, VS. D/Z¢,EQ.(33)
@ Y2 VS. D/Zg
.010 ]
CURVE @)
o N R RN NUEE Lo Ly
100 1000 10000 100000
O/Zq
PIGWRE 7
Curve (1): relationship between Manning®s n, z_and D,
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PURE WIND-DRIVEN CURRENT IN AN UNBOUNDED CHANNEL '

In the special case where Ty = Ta (uniform stress from top to
bottom) the surface slope is zero, That is, there is no gravitational
force inducing the motion of the water; hence the current is purely wind
driven and steady, since the gradient of the stress vanishes (curve 3).
In this case the velocity distribution is given by eq (19c), see Fig, 6
(curve 3) for illustration of this case, The mean cuwrent is given by

the simple relation (23a), The latter relation can be expressed in the

form
v o=y "1, 2 (34)
1 ‘b k

in view of eq (30), Hence we have

= = T =T
Yb , for b s (35)

This relation could be of value in estimating the resistance coefficient
for an ungated canal during times of sustained strong wind along its
axis, provided that no head differential were developed at the opposite
ends of the canmal, This would require slack water conditions in regard
to tides or surges, such that the current is truly wind driven,

WIND SET-UP IN A BOUNDED CHANNEL OR PARTIALLY ENCLOSED BASIN

For stealy state wind set-up in a channel bounded at the downwind
end, the discharge through each section of the channel must be zero, i.e.,
the mean current vanishes (hence V = 0), This situation can exist only
if the s hear stress exerted on the bottom by the fluid is opposite to
that at the surface, the flow in the lower layers of the channel being
opposite to that at the surface, With respect to a vertical column of
fluid of unit horizontal cross-section, the stressesT. and T add in
their eftect and just balance the net force due to the surfacesslope

(Fig, 9).

For the condition of V = 0 we will let

o

=m (36)

/]
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FIGURE 9

Schematic of the balance of forces on a vertical column of water of
unit width, axial length Ax, and depth h + 7., The net pressure force
is pg(h + M)AT) which under equilibrium ccnditions must balance the
total external shear force which is (|Tg| +|Tpl)ax for this case,
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For r < 10-2, eq. (18a) can be used to evaluate m as an implicit

function of the bottom roughness ratio r, = zo/D. Thus

1n < L > = 21et sttt Ao 1—1529 (37)
Zo ﬁ ,\/?o o

A plot of m ver sus D/zo is shown in Fig, 10 (curve 1), This curve is
compared with the theoretical relations obtained by Kivisild (1954)
curves (2) and (3). A discussion of the latter relations is given in
Appendix B, Hellstrom (1941) arrived at much higher values of ms 0,30
for a channel depth of 1 meter and 0,15 for a depth of 100 meters, If
we consider that z, is of the order of 0,2 cm for a rippled sand or
gravel bed then the above values of m correspond to D/zo = 500 and
and 50,000 respectively, This would indicate that the m, values of
Hellstrom are roughly threefold greater than those of the present theory,

Direct measurements of bottom stress by Van Dorn (1953) in a model
yacht pond of 6 feet mean depth indicated a value of m of less than 0,1
for D/z of the order of 103 to 104. Laboratory tests conducted by
Franciso(1953) indicate an m value of only 0,014 for a tank of 44-cm depth
with a wood floor, If we take an equivalent sand roughness diameter
(20/30) of 0,053 cm (Keulegan, 1938) then the above value of m, corresponds
to D/zo equal to about 25,000,

The velocity distribution for the case of V = 0 in the present
theory can be obtained from eqs (10a, b) together with eq (12a), It will
be noted that r, must be known as well as r, in order to evaluate the
velocity distribution, Actually, the value of r, is important only in
the determination of the surface current u_e Below the surface, the

velocity distribution is quite insensitive to the value of s (provided
that rl is less than about 10-2).

We can obtain an estimate of rl in relation to ro for the condition

of V =0, from laboratory tests carried out by Keulegan (1951), Keulegan

found that for sufficiently large depths (hence large D/zo) the measured
surface current approaches a limiting value of about 3,3 percent of the

wind speed, If we take the surface stress as

T &3,3x 1070 oW’

s (38)
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graph of m_ versus D/z computed from eq (37) (present theory),
graph of m® versus D/z° using eq, 4.4,11 of Kivisild®s paper

or eq., (B-1) of Append?x B,

graph of m_versus D/z using eq 4.5.9 of Xivisild®s paper

or eq (B-23 of Appendik B,

graph of r =1 versus D/z evaluated from eqs (14), (37) and

the approximate re}ation (39) deduced fron Keulegan®'s experiments (1951),

100,000



where W is the wind speed along the channel axis (Beach Erosion Board,

Technical Memorandum No, 27, 1952, p, 9) then
u

U = —3>— & 18,2, (39)

s
A/TS/O
for the case of zero net flow (Vv = 0), Using eq (37) and (39) in

eq (14) yields r,asa function of D/zo' A plot  this relation is

shown in Fig 10 (curve 4), It will be noted that T, is nearly independent

of D/zo and for all practical purposes we can use a mean value of r1

of about 1/3000, Thus the surface roughness parameter z_ is approximately

1
1/3000 of the depth, for steady set-up conditions,

The veiocity distribution for the case of V = 0, taking ro = 10-3
and 10"4 and rl = 1/3000 is illustrated in Fig, 1 (full and dashed
curves respectively), Relation (38) has been used to convert U to u/W,
This allows direct comparison with empirical values of u/W (also shown
in Fig. 1),

RELATION BETWEEN m, V, and r‘_J

Eqs (18a) and (22a) give m implicitly in terms of V for a given
value of r. provided that im| >> L. These equations can be written

in the form

-1
V = - [}B |m| = fl (m)] y m<O0 (40a)
ve [r7t £, (m)
b ST - , (m s m>20 (40b)
where -
_ 2 [ 1 1 + 1m -1 1
fl(m) = % Allm| L 5 1n T - tan —-—J + 1p(41a)
o {mi
f(m) = 2 g1 AU (41b)
o AT

For m = 0 relation (23) yields the appropriate value of V.,

Since both fl(m) and fz(m) approach zero as Im| approaches

infinity it follows that the quantity V' defined by

v'

u
'
~
o

Im| y M< O

e o -1 (42)
an m| , m >0
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is an asymptotic form of the general relation for V, It is therefore
convenient to plot V versus m/wﬂET since the asymptotes will be
straight lines running through the origin, the slopes of which are
determined by r alone., The general relation of V versus m/, /|m| for

the three different values of r_are shown in Fig, 11 (full curves);

the asymptotes as determined from eq (42) are also shown (dash-dot lines),

The dotted curves and circled points refer to an approximate formula
discussed in the next section,
BXPLICIT RELATION FOR BOTTOM STRESS

Bquations (40a, b) yield V explicity in terms of m, More
frequently it is necessary to know m explicitly in terms of V, Fig, 11
is sufficient for this purpose from the graphical standpoint, However,

it is frequently necessary to express T _, hence m, explicitly as a

b
function of v and Ts in the form of an equation, This i1s particularly

true in respect to computations of T _ by high speed digital computers,

vherein the use of a formmla is usuglly more efficient than storage of
a table of numerical values,

The following formula* is an approximation to the relation (40a,b)
which yields values of m to an accuracy consistent with the approxi-

mations introduced in deriving egs (40a,b):
2 2
m=2+ Yy~ [V=6()] (43)

where the sign is taken consistent with V = G, The function G(a) is

given by
(a) G() = 5 N 1,90 Ajai , a<0
142 jaf 0.48 + a2
‘ (44)
()  Ga) = —=2 - 2L s
1+ 2a 0,043 + n
where
a = 75 V = Vo)- (45)

and Vo is given by eq (23), which for very small r  can be taken equal

to 5 for all practical purposes,

* For methods of derivation see Appendix C,
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Graphs of the dimensionless stress parameter m versus the dimensionless mean
current V for three selected values of D/z , computed from the rigorous eqs
(18), (21) and (22) (full curves), Simpleoasymptotic relations shown by the
straight dash=dot lines, The circles and dashed lines (detail A) indicate
values computed from the fitted relationship which allows calculation of m
explicitly in terms of V, .



For V =V =5, a vanishes, G reduces to 5 and hence m = 0, thus
o
satisfying the rigorous equations (18) and/or (21), As V approaches

infinity, implying that v is very large or rs is very small then

G > 2y >0, asV —> « (44a)
Y.V
b
whence
m—> Vbzlvlv, as V —> (43a)

which immediately reduces to eq (1) if multiplied by Ts « Thus the
asymptotic behaviour is the same as for the rigorous equations,
Taking VO equal to 5 and setting V = O gives the following ap-

proximation for noe the stress ratio for steady state set=-up conditions

vV .2
2 2 5 8% 7b

m Y + (46)
o b 2
1« IO)L 1+ 52)%

and zero net flow:

where Yo is given by eq (30), For D/zo equal to 103, 104, and 105 the
corresponding values of m computed from eq (45) are respectively 0,097,
0,057 and 0,037 which agree to within one unit in the third decimal place
with the values found from the full curves of Fig, 11,

Values of m from the approximate formula (43) (together with (44) and
(45) are compared in Figure 11 with the more exact relations (40a,b)
(together with eqs (41a,b)) for a wide range of values of V (circles
represent values from approximate equation), The paranmeter V0 was taken
as 5 for each of the r, values represented in these curves, An enlarge=
ment of the graph in the region of very small m is shown in the inset of
Fig, 11, This shows that the only appreciable difference between the
approximate eq (43) and the exact equations occurs near V = 5, which
results from the approximation V0 = 5 in eqs (44) and (45),

Throughout all of the preceding development we have considered that
the x=axis is taken in the direction of T, so that the latter is always
positive, If we fix the direction of the x=-axis independent of TS then

it can be shown from eq (43) together with (6b) and (16) that

Tb = :. pybz [V - V* G(Q)Jz (47)
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the sign of‘Tb being consistent with v - v*G(a), where

ve o= ts (48)
1”75|/p
and
a =y, [(%) -VO] (49)

The function G(a) is the same as that defined by eqs (44a,b) andjrb
is given by eq (30) in terms of D/zo. Note that the parameter v* has
the units of velocity and takes the sign of Ts.

A plot of Tb versus v for the case of D/zo = 10,000 is shown in
Fig, 12 for different values of T, (both positive and negative values),
The special case T, = 0 is the simple quadratic law, eq (1),

Bor sufficiently small values of v*/v the above equations approx-

imate to
2 -4 2
Tb =% |v| v - 5)% Tge forlrsl < 10  pv (50)

Kivisild (1954, p, 83) suggested a similar relation® for the entire
range of Ts; the present theory indicates that this form is applicable
to very small values of Ts/pv2 only; or for a given T, eq (50) holds

only for large values of v,

SUMMARY

A generalized formula for the bottom shear stress Tb' exerted by
the fluid on the bed of a channel, is derived which takes into account
the shear stress Ts at the surface of the fluid as well as the mean current
v in the channel, In addition the dependence of the bed resistance on
channel depth and bottom roughness is taken into account, The formula,
in sufficiently accurate form, is given by eq (47) together with eqs (30),
(48), (49), and (44a,b), In effect the influence of the surface wind
stress enters as a correction factor to the usual quadratic law for
bottom stress, where the correction term is added or subtracted from the

mean current, As can be seen from eq (47) or graphically from Fig, 12,
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X [? terms of the present symbols, Kivisild suggested the approximation
b= pybzlv[ V - myTg. Actually mgy is much less than 5y, .
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Bottom stress versus mean current for five different wind stresses, ranging
from =100 dynes/cm® (opposing wind) to +100 dynes/cm? (following wind), for
the case of D/z = 104. Note particularly the pronounced asymmetry of the
isoline spacingofor opposing wind stress and following wind stress. Also
note that the range of bottom stress as delineated by the isolines for T =
=100 and +100, increases with the absolute magnitude of the current, (The
wind stress of 100 dynes/cm? corresponds roughly to a wind speed of the order
of 100 knots).




the influence of a following wind (i.e,, in the same direction as the
current) is to give a bottom stress which is less than that predicted
by the simple quadratic formula, eq (1) , while an opposing wind yields
a bottom stress which is greater than that predicted by eq (1), for a
given value of the mean current v,

The simple quadratic law, eq (1), which applies when the surface
stress is negligible, and the bottom stress for the case of steady,
wind=induced set-up of water in a bounded channel are special cases of
the general formula, In the latter of these special cases Tb = - moTS
where m is given implicitly by eq (37) or explicitly by the approximate
eq (46)? The small amount of empirical data in regard to m, is really
not sufficient to verify this aspect of the theory; however, the velocity
distribution predicted by the theory in this case does seem to fit the
scatter of observed velocities (Fig, 1), The desirability of further
measurements for testing this and other aspects of the theory is apparent,

The theory is based upon the assumption of steady statej; however
it is presumed to be applicable to flow conditions where the current
varies slowly with time, such that it might apply adequately to the case
of very long surges in a tidal estuary under the inf luence of storm
winds, Some question arises as to the applicability of the formulas
when large wind waves are present and this aspect needs further investiga-

tion,
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APPENDIX A

MEAN CURRENT FOR NEGATIVE m

In order to evaluate the integrals indicated by eq (17) we make use

of the relations:

-

J'a 'l:a.n-1 ada = (1 + az) tan-l a = % a + const, (A=1)

aln ALE da = & (az = 1) In Lo | a + const,
1 +a 2 - 1 +a (A-2)
which can readily be verified, If we take
a, = v/Bo. a, = V/B1 (A=3a,b)

and make use of the relation for y as given by (11), it can be shown
that the differential dc can be transformed as follows:

2 2
2B 2B‘1

dc=- 0 a da = =
1+ |m 1+ |m|

Substitution of eqs (10a,b), (A-3a,b) and (A-4a,b) in eq (17) renders
the latter equation in a form involving the integrals in (A=1) and (A=2)

above plus a simpler integral of a alone, The resulting exact integra=-

tion gives for m < 0, after the expense of some algebraic manipulations:

2 -1 1
V== 1(1+ r + rl) (1 + ,flmj) - Bo tan B
k¢ o (A-5)
B+ Am] B, » 1
+ % (1 + ro) In =2 = % rlln :
Bo - 4/|m| , Bl -1

The terms (1 + r o+ rl) and (1 + ro) are very nearly equal to unity and
ko' is very nearly equal to ko as explained in the text, Using the ap=-
proximation (13) the last term (in braces) in eq (A-5) has a magnitude
very nearly equal to

4



-3 .
For T of the order of 10 = this term is at most (m = 0) about ,004,
in comparison with values of the first term which is of the order of
unity, Bven with r,c 10-2 the expression (A=6) is only ,030, which

is still negligible, Thus eq (A=5) simplifies to the approximate form
(18), with sufficient accuracy,

MEAN CURRENT FOR POSITIVE m

Employing the transforms (A=3a,b) and (A-4a,b) with eq (19a) in
eq (16) and making use of the identities (A=1) and (A=2) gives the

.

following exact integration for 0 < m g rn/l +r :

= e % % -1 1
Vo= (1« r o+ rl) (1 =q4m) = B (1« r) [tan Bo

(4]

= tan

-=1xr.B + 1In
B0 2., Ll BL ¢ f| Bl .

(a-7)
_1/@.—} 1 [lnnl-,\(ﬁ Bl+1]

It can be shown that the last term, modif ied by :181 is negligible as
=2 ; ; :

long as T, < 10 ', Neglecting this term and taking (1 + r,* rl) and
(1 + ro) as unity, eq (A=7) reduces to the approximation (21), Similar

approximations are made in deriving eq (22),

A-2



APPENDIX B

OTHER FORMULAS FOR m

Kivisild (1954) finds two different relations for evaluating m e
Prom his eq 4,4,11 we get*

= Dn(D/ZO) _ 1] - 1 ; (Curve 2 of Pig, 10)
o Pn(D/zo) - 1.5} : ‘

m
(B-1)

and from his eq 4,4,9 we get the following implicit equation for m

D
3/2 1/2 "o
m + 1 = m (1 « mo)ln zo(l = mo)

o =0 (B-2)
(Curve 3, of Fig, 10), The first of these relations is derived on the
basis of a linear variation of shear stress and a linear variation of
mixing length (eqs (3) and (5a) respectively), The second relation
however, is based upon a discontinuous stress and mixing length distri=
bution as shown schematically in Pigure B-l, The expression (B-1) is in
better agreement with the present theory (curve 1 of Fig, 10) as might
be expected since a continuously varying stress is employed,

Although the concept of a discontinuity in the stress distribution
is physically unsound, it doecs lead to remarkably good results for flow
in pipes, However, in the case of channel flow where the stresses at
the top and bottom may differ considerably, there is no assurance that

the procedure of employing a discontinuous stress will be adequate,

B-1
*Kivisild employs the notation n in place of Z and f in place of

1l « mo,
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FIGIRE B~1

Schematic of stress and mixing length distributions as used in Kivisild's
theory (full curves), The distributions used in the present theory shown

by dash-dot curves,



APPENDIX C

THE FITTED FORMULA FOR m AS A FUNCTION OF V AND }’b

Eqs (40a,b) can be expressed in the form
2 2
m=sy " [V - fm)] (c-1)
where the sign is taken consistent with that of the quantity in
brackets and
fl(m) for m < 0

f(m) = (C=2)
-fz(m) for m> 0

-1 )

For m = O the function f equals 2k0 which is very nearly equal to VO.
The function f(m) represents a correction term to the simple quadratic
formula (42), where the largest value occurs at m = 0, i,e,,at V =V

We wish to be able to express f in terms of V and )Y, rather than m,

b
As a first approximation we might take m = + 752V2 for the purpose of

evaluating f(m) in (C~1); this would be a good approximation for large
m (hence for large V) positive or negative, but would not be good for
small m, A bettar approximation is to take m = + 752 [y - VJQ ; this
will give the exact value of f at m = 0 and is still a good approximation
for very large values of V or m, It will be noted from Figure 11 that
if we transform the variable V to > £ (V-Vo) this will shift the origin
to the existing point of intersection of the curves on the V axis and
will produce a (clockwise) rotation of the curves such that they all
approach a common asymptote, All these curves are nearly coincident,
and if we choose the intermediate curve (that for £ = 10—4) we can
evaluate f approximately in terms of the variable a E)fb v - VO) where we
take Vo = 5 for simplicity,

For very large m, the asymptotic form of f according to eqs (41la,b)
is

1

f(m) => ————ou 35 ]m[-——-:» © (C=3)
k, Aiml

and since a —=> Af[ml as (m] —> o it follows that



f — -%IS- as m| —> « (C~4)
where k0 is taken as 0,40,
Consider the function
5
o T=2 lai (C=5)

This function has the property of approaching the asymptotic form for f

for large a

of f under this condition,

Gl(a)

Gz(a)

accordingly reduce very nearly

for large a,

maximum positive value of 1,88 at a

to zero at a

and reduces to 5 at a = 0, which is the approximate value

The differences

f(a) =G (1), a <0
° (C-6)

f(a) - Go(a), a> 0

0 and approach zero

It is found graphically that the anomaly Gl(a) has a

- 0,40 and Gz(u) has a maximum

negative value of -0,85 at a = 0,12,

We can get a reasonable fit of the correction terms Gl(a) and

Gz(a) by selecting the forms
('

Gl(a)

Gz(a)

\

The asymptotic forms for very large a are accordingly

-

G, —>

n
a, la|
= p.(1>0
b1 + la]
(C=7)
a.a
= 2 * a <O
b2 + ap
21
“omn as lal — 00
b, faf P
1 (C=8)
32 as a 0
—
b2 a p=n

These correction terms must be of second order compared with the asymptotic

expression (C-4); therefore we require that p-n > 1,

It is found that by

plotting the log of Gl(a) and G2(1) versus the log of a that the slope

for large o can be suitably approximated as 3/2 which satisfies



the aforement ioned condition,

The position of maximum G1 or G2 can be shown from eqs (C-7)to be

given by

p nb

<P - (C-9)
m P = n

where a is the position of maximunm G1 or G2 where b is taken as b1 or

b2 respectively, If we choose p = 2 and n = 1/2 such that p - n = 3/2

[

as indicated above and evaluate the constants al, bl’ a2, b2 from the
condition that the maximum values of G1 and G2 are satisfied, it is

found that the function f(m) as represented by

Go(n) + Gl(a) for a < 0O
G(v) = (C=19)
G (a) + G_(a) for 1 > 0
(o) 2

is accurate to within about 0,1 for all values of a, This indicates
that the estimation of the correction term f in eq (C-=1) by means of
G(1) is accurate to within two per cent of the maximum value of this
term, The resulting formnulas for G(a) with the appropriate constants

are given by relations (44a,b),
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