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FOREWORD

In the design of certain types of structures, the highest
wave which can reach the structure for a particular set of wave
conditions is frequently of importance. Certain parts of the
structure may have to be designed to withstand a single highest
wave incidence rather than the more commonly occurring signifi-
cant or average waves. This paper presents a theoretical
development for computing the properties of the highest wave.
The theory is valid for all depths where the relative depth
(d/Lo) is greater than about 0.04; the solution for the highest
wave in deep water (as calculated by Michell and Havelock) is
obtained as a special case.

This report was prepared in the Exploration and Production
Research Division of the Shell Development Company in Houston,
Texas, as a part of their general program of wave investigations.
The author of the report, Dr. J. E. Chappelear, is a Physicist
in that organization,

Because of its application to the research and investigation
program of the Beach Erosion Board, and the wide interest in the
description of wave phenomena in this country, this report is
being published at this time in the Technical Memorandum series
of the Beach Erosion Board, through the courtesy of the author and
the Shell Development Company. It is hoped that dissemination of
this information may serve as a stimulus and a valuable aid to
workers in this country.

Views and conclusions stated in this report are not necessarily
those of the Beach Erosion Board.

This report is published under authority of Public Law 166,
79th Congress, approved July 31, 1945,
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LIST OF SYMBOLS

Aj equations (22) to (25)

bj equation (6)

Bj equations (28) to (31)

C, equation (27)

Co wave velocity

d depth

D, equations (36) to (38)

g gravitational constant

H wave height

k wave number, 27/A

q(z) complex velocity, u - 1v

r radius vector from crest, equation (32), Figure 2
T wave period

ulx,y) horizontal velocity component

vi(x,y) vertical

w(z) complex potential, ¢ + 1y

x horizontal coordinate

y vertical coordinate

z X + 1y

a angle between r and vertical, equation (33) and Figure 2
€ distance from the free surface to bottom (w plane)
€' elevation of crest in z plane

A wavelength

Plx,y) velocity potential

Yix, y) stream function

w angular frequency, £7/T



ON THE THEORY OF THE HIGHEST WAVES
BY

J. E. CHAPPELEAR

Shell Development Company, Exploration and Production Research Division, Houston, Texas
(Publication No. 203)

ABSTRACT

Following a suggestion of Michell,3 we have made a calculation
of the properties of the highest periocdic gravity waves which can exist
in steady, two-dimensional flow, neglecting viscosity. The "highest wave"
is one satisfying the criterion of Stokes that the particle velocity at
the wave crest be equal to the wave velocity., The theory is valid for all
values of the parameter d/T2 greater than 0,2 ft/secQ. The highest wave
in deep water, whose properties were first calculated by Michell and by

5 . . .
Havelock, is obtained as a special case,

INTRODUCTION

Calculation of the properties of the highest wave has been a
theoretical and practical problem of considerable interest since the
publication of the investigation of Gerstner,  Gerstner found that in
water of infinite depth one could obtain an exact solution in terms of
elementary functions, The wave motion i1s rotational and hence does not
seem to be physically realizable, For purposes of the investigation
described in this paper, the problem is to find an irrofational solution
to the equations of hydrodynamics Laving the properties of a wave. It
should be steady and two-dimensional, with the particle velocity at the

crest equal to the wave velocity.



Stokes” pointed out that such a wave would have a sharp angle
of 120° at the crest. Michell,s by means of an approximate treatment,
was able to find the highest wave in deep water and suggested how to
extend his results to water of finite depth. McCowan® found the highest
wave in shallow water (the solitary wave) by a modification of his treat-
ment of the ordinary solitary wave, Havelock' improved the numerical
procedure of Michell and showed, by an appropriate modification of the
assumed functional form of the solution, that there was a smooth transition
from the highest wave to the infinitesimal waves of the Airy theory. The
practical problem of prediction of wave properties in intermediate depths
is reviewed by Bretschneider,6 who also gives a summary of the literature.

This paper carries out the suggestion of Michell that his theory
could be extended to water of finite depth. His numerical results are
shown to be slightly inaccurate, largely as a conseguence of a better
approximation procedure employed here, Numerical results are obtained for
values of the parameter d/7% > 0.2 ft/secz. The numerical results do not
agree exactly with the modified solitary wave theory of Munk,13 probably

owing to the inherent inaccuracies of both calculations.

THE HIGHEST PERIODIC WAVE
The problem to be solved is the determination of the surface
profile and particle velocity for the highest permanent wave in wafer of
finite depth. A mathematical formulation suitable for our purposes can be
stated rather concisely. Stoker’ (Chapter 1) gives a much more detailed

description of the general problem for waves which are not the highest.



The waves are assumed to be periodic, steady, irrotational, and two-
dimensional, For the waves to be steady, there must be a steady flow
superposed in order to bring the wave profile to rest. The translational
velocity of the coordinate system relative to a fixed system is the wave
velocity, one of the wave properties to be calculated., The flow may be
represented conveniently by a complex velocity potential as a function of

z, the complex position,

w(z) = lx,y) + blx,y) . (1)

The real part of w is the velocity potential, and the imaginary part is
the stream function, The derivative of w with respect to z is minus the
complex velocity, whose real part is the horizontal velocity component

u{x,y) and whose imaginary part is the negative of the vertical velocity

component v{x,y).

QW(z) = —q(z) = -ulx,y) + ivix,y) . (2)

It is convenient to consider the boundary value problem in the
potential plane rather than in the z plane; that is, the potential is a
conformal map of the z plane onto the w plane, In the w plane, the region
occupied by one wave is a rectangle, The problem in the w plane is to

find a periodic function satisfying the boundary condition,

9 a4
(Lot l; g In [g(w))y., | (2)



the Bernoulli theorem., This form of the theorem is obtained from the
usual form in Appendix I. Another boundary condition is that there is no

flow through the bottom.
Im [Q(w)]¢=o =0 . (4)

For convenience, the real period of the complex velocity 1s chosen to be 7,

There, the condition of periodicity, the additional boundary condition, is

glw + 7) = glw) . (5)

It is still necessary to consider the question of what is meant
by the highest wave. Stokes suggested that the particle velocity at the
crest of the highest wave should equal the wave velocity, This condition
establishes an upper 1limit on the particle velocity, which might not occur
except in very special circumstances, However, a separate investigation
would be necessary to prove, either mathematically or physically, the
existence of the waves treated here., For the purposes of this paper, the
1ighest wave is defined as a wave satisfying Stokes' criterion.

In the moving coordinate system, the velocity at the crest is
zero, since the crest is part of the profile which is assumed to be steady.
Stokes proved heuristically that if the zero at the crest were assumed to
be a branch point (in particular he assumed that w « z%), the order of the
branch point would be 1/3 in the w plane. Consequently, the flow in the
vicinity of the crest would be the same as the flow in a corner between

walls inclined at 120°. A short proof employing the notation of complex



variable theory is presented in Appendix II. No exclusion is made of the
possibility that the character of the complex velccity in the vicinity of
the crest might be different, e.g., be proportional to (w log w}z; 1o
proof has been found that such z behavior 1s impossible, but it does seem
physically reasonable that such a solution would be unstable relative tc
the one discussed here,

The complex velccity is now limited to being & periodic function
with an array of zeros, everywhere regular. The free surface will be
identified with Y(x,y) = € and the bottom with Y¥(x,y) = 0. The procedure
of Stokes for the determination of the properties of waves of finite
height is first to assume that the velocity can be expeanded in a Fourier
series along the bottom where the velocity is real., Then the velocity is
extended off the real axis by analytic continuation. ZFinally, the unknown
coefficients are calculated from Bernoulli's theorem by putting successive
coefficients of cos n¢ equal to zero. That the series obtained in this
fashion is convergent was first shown by Struik, ®

Michell proposed a modification of this procedure which takes
explicit account of the nature of the branch points. The Fourier series
is multiplied by the 1/3 power of a periodic function of w which has simple
zeros at the correct positions in the w plane., Although there are a number
of possible choices, it is convenient to follow the suggestion of Michell
and to put

667 % (w)

glw) = ————(1 + 2b,e ?“cos 2w + 2b,e *“cos 4w + 2bge °“cos 6w)

21/3 * (

(2}

n



A constant factor with the dimensions of a velocity has been put equal
to 1, The function &,(w) is one of Jacobi's theta functions (Erdelyi,®

Vol, 2) and for this paper will be defined by its Fourier series

There are first-order zeros of ﬁo(w) at w =mw + 1{2n + 1) e where m and n

are integers, This property can be verified by the transformation formula

, (8)

where the funetion &, {(w) is defined by

m

g, (w) = 2e”/? {'—l)ne—zn(rﬁl)
L
7=0

O

€sin(2n + 1)w . {

51 is periodic with period 27 and has the specified zeros, The formulas,

in consequence, will be valid only in the rectangle bounded by the lines

¢ =0, y=0, & =m and Yy = €. The velocity and profile are to be

continued out of this recténgle periodically. The succeeding terms in the
Fourier series in equation (6) are omitted with the hope that their

influence on the solution would be smell, The choice of the exact form of
the expansion coefficients (i.e., Ebje"zjs) conforms with Michell and
Havelock, whose results for infinite depth (¢ - w) are a special case of

these formulas, It can be shown that the complex veloecity, equation (8),

is identical with that proposed by Wichell and Havelock for € - w .,

(e P



Because of the choice of units, the numerical value of g is not
given, and it must be calculated as one of the unknowns, together with
by, b,, and b5, All these unknowns depend upon the parameter €, which
specifies the physical parameters (e.g., the ratio of the depth to the
wavelength)., It is reasonable that there is only one parameter, since
there is presumably only one "highest" wave in a given water depth,

On the free surface,
w =9+ 1e (10)

When this value of w is put into equation (8), there results

-5+i(%-F)
Q‘(':;b + 16) = ?——-—-—z‘/—;"‘*— (9}-[3{¢) [l + 2016_26008 2(¢ + ‘LE)
(2]

e %€cos 6(¢ + ie€)] {(11)

by the use of equation (9).
After considerable algebraic manipulation, the first four terms
in the Fourier series expansion of the left-hand side of eguation (3) can

be calculated. They are

N
) , €/6 )
Zla(d + se) |* = £ 261 )) jeos (-3¢ . ()

j=1

The functions Ai are abbreviations for



(14)

(15)



e have employed as abbreviations
40 = [1 + 621 + 7°) + ball + %) + 03(1 + 1°)],
A7 = [b4(1 + 1) + byby(1l + M) + bobs(l + 7701,
A = Dbl + %) + bibo(l + %) « b,
44 = [bafl + 1) + biby(n + M),
4 = lbabalm + 1°) + bain®)1,

AL = [bybg(n® + 1)1,

AL = b3m”
and
Bo = A4% + 2(41% + A% « 447 - 417 « 417+ 417),
B,
vy = AQAL + AlAL + ALAL + ALAL + ALAL + ALAL,

4418
B
T AL v ALAL v ALAG ¢ AfAS + AgAY,
BS a
= 2A4L + ALAS + ALAL + ALAL) - 447,
=
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= A{AL + ALAL + ALAL,

Bie

av]

BlB

Bao

= A,
Bog 2

o T

and

with the neglect of terms of higher order than e '*%€ in the Fourier series
for €,(w). In order to cbtain reasonable accuracy in computing &,(w) for
values of € as small as 0,2, it is necessary to retain terms of this order,
fle do not neglect products of the bj's, as do Michell and Havelock,
Consequently, the numerical results obtained here will not agree exactly
with their results for the case of infinite depth.

The right-hand side of equation (3) can also be expanded in a

Fourier series in the interval O < ¢ < 7, The expansion

[+5]
sin 2r o+ Ps A N3 (e . 1) Y cos (2n + ‘I_)‘i e
H " 5]* :l 77 (er "/ 9(en + 1)2 - (6r + 1)2 17)
: n=0



is useful in the calculations, The first four terms are

pis
, . e</%01/3(¢) elB N\ _
Im g(¢ + 1€) = - = 7/ Bj cos (27 - 1)d (18)

Jj=1

where the functions Ej are the abbreviations,

B _ 1 + b (_i_e-—u&' _ _:7_} + b 11 -se _ 13} + B 17 —-12¢ _ 19
A S T 20 2(112 160 3 |280° a5z 0 (19)
B, = L. bl[i y ﬁ{u} . b {;;e*ee i l&J b [_u_e-ue . A&]
80 32 56 2140 88 3208 280 » (20)
~ Al
B, = 1 4 p (7 - L-uel 4y [;;_ B 116—85] . b [176—126 B 19)
3 224 1[176 40 i 2156 104 364 126 (21)
and
B, - L+ 51[ 7 b e—ue} . 52[15 ~ 116—86] . b%[;g _ 17 -12¢€) )
440 392 416 272 320 380 152 ] (22)
Now equation (3) reads
e
0 = } "Aj - 18i§_§8j] cos (27 - 1) . (23]
i=1 ’

When the cgefficients of the wariocus cosines are put separately to zero,
four equaticns in the four unknowns result; all fthe eguations contain
the parameter €. The sclutions to these equations as functions of € are

given in Table 1,



TABLE |

ol b B e & dib e ftdl'ls?:c2 'F‘;.l,l/'/sT:c2 gﬂ%}\:iﬂft’ il €
O.2n L4596 .222 . 0890 5.39 . 0666 . 870 . 1990 . 1729 .5B830 L1178 .26
0.23 430 . 174 L063 | 4,95 L0775 . 821 2524 L2074 L6351 . 1320 . 159
0.2(% . i -137 | .0456 4.58 .0885 . 786 BN | L2444 . 6854 . 1465 . 069
0.3 33517 L1100 B3 4.291 . 0996 . 7582 i s L2834 L7321 | L1600 . 057
0.4 L2339 . 06065 01873 5,67 . 1328 L6932 .5B22 L4038 . 8558 L2034 .04
0.5 . 1705 . 03684 . 00894 %.298 . 1659 L6386 . 80068 BT . 9526 L2430 . 067
0.6 « 128! . 02480 . 00606 3.062 . 1988 5871 | t.045 L6134 1.0258 02823 | .053
0.7 .09949 .01848 . 00469 2.911 | .2314 .5386 |. 280 . 6894 |.0792 3187 . 050
0.8 .08018 .01504 - 00397 2.811 - .263%8 L4939 1.511 7461 1. 1176 354 | . 046
0.9 06716 .01309 .00366 | 2.745 .296 | 4535 |.736 . 7B76 . 1444 . 3883 . 043
1.0 . 05839 L0185 . 0033 | 2.700 .3282 L4175 |.5956 _-8163 . 1634 L4218 .042
2,0 . 04076 .01007 . 00286 2.615 L6471 2205 | 3.986 .B78B7 1.2012 | .7434 .038

8 .04043 -0l1004 . 00285 2.614 4 . 9655 - 1479 | 5.547 | .8797 l.2019 |.0618 . 039

*The values of € which were used were correct to eight decimals. Thus 0.2 means 0.20000000, and O.2§ means 0. 23333333,

The final step in the problem is the integration to obtaln =z

as a function of w,

This integration was performed numerically,

free surface,

directly from eqguation (24).

&’
2
E

|

f— _——T
(=
(A

=9
ta

Since the line Y

a parametric representation of the free surface

Because ¢ (w) has a branch point

(24)

€ is the

was obtalned

at w = 1€

(the wave crest), it was convenient to perform the integration directly by

meens of a power series expansion in the neighborhood of this point. The

numerical values obtained are listed in Table 2.

normalized by dividing by the wavelength.

The values have been
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P 2e/ A 1.0000 | 9541 .908! 8620 | .8158 | .7602 | .7224 | .675! .6272 5787 | L5203 | L4789 | .4273 | .3741 3187 | .2601 L1963 | L1223 0
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’ 2Yix)/h | 1.2008 | 1.2020 | 1.2037 | 1.2064 | 1.2103 | 1.2154 | §.2217 | 1,2293 | (.2383 | 1.2486 | (.2604 | 1.2740 | 1.2804 | 1.3070 | 1.3276 | 1.3516 | 1.3807 | 1.4181 | 1.4869
1 —
4 00 25 /A 1.0000 | .os4a | .9087 | .B629 | .B8I70 | .7708 | .7242 | .677) .6295 ! eIz | .m320 | .amis | La303 | .377) L3216 | L2627 | .1985 | .1238 0
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*Ses footnote, Table 1.



The integration was continued from the trough vertically to the

bottom and then along the bottom to a point directly underneath the crest,

a path shown in Figure 1.

(A/2,¢€'-H) {0,€)

(w/2,¢)
X
d=1/x [ v ax
o

{m/2,0)

Figure !
The depth, which is the average distance from the profile to the bottom,

A
0

>\

and the wave height, which is the vertical distance from crest to trough,

g =7Y(0) - YH , (28)

were computed. The ratios d/A and H/d are given in Table 1.

In the z plane the velocity can be represented by a complex

Fourier series,



J

glz) = -Cq + g C,cos nkz (27)
n=1
where £ is the wave number defined as
b o= 2m/N (28)

The number of terms in the series 7 was left variable in order that the

geries could be used to fit the various velocity fields with a preassigned
accuracy., The velocity was computed at a large number of points along the
path shown in Figure 1, excluding the immediate vicinity of the crest. The
coefficients C, were calculated to give the best fit at these points in the

sense of least squares. The values of the O are listed in Table 3 as

TABLE 3

oS _ ColCo |  -C4lCe | =Callo Cs/Co Dy D, Dy
0.20_J_t:549 ot7ar100™t | oLat4001007 | 7ot | 525901007° | 1.949 | 5.722 76. 19
0.23 | . 1600 813301007 | .3124010)"" | .143301007" | .2344010072 | 1.940 | 5.45] 82.74
0.26 | .le4s JT1es01007 | L222201007 | L 737001007F 1.9131 | 5.098 | 79.16
0.30 | .1698 6220010074 1 Lis94¢101~" | .3986(10)" 1.8815 | 4.7371 | 72.067
0.40 | .1718 | .3760(101~" | .8605010)"% | .7540(10)"" 1.7897 | 3.8094 | 50.248
0.50 | .1605 | 220501007 | .2199010072 1.7191 | 3.1579 | 35.626
0.60 | .1454 (120401037 | .gg45(1017° |.6692 | 2.7159 | 26.878
0.70 | . 1267 .6745(10)7° | .3005(10)7° 1.6352 | 2.4209 | 21.682
0.80 | .l1082 .3342010)”% | .1895(10)~"° 1.6120 | 2.2240 | 18.536
0.90 | 910601007 | .224501007° | .977300017" 1.5964 | 2.0927 | 16.58I
.00 | .75970100™* | .1347(4017% | .5205(101~" |.5860 | 2.0044 | 15.336
2.00 | .1oa7(100=* | .iss0c101™* | Li261¢10)7° |.5649 | 1.8295 | 13.03]
3.00 | . 1445010072 | .3363110)° | .313101017° 1.5645 | 1,8263 | 12,994

ratios C,/Cy. €, is defined as the wave velocity, following Stokes., No

more than six coefficients were needed for any value of €.



With the wave velocity and wavelength known, the period T can be
calculated. Then the dimensionless ratio d/gT2 was obtained, and hence
H/gT2 and K/gTQ. The values cof d/TQ and H/T2 in units of ft/sec2 were
obtained by multiplication by g (32.2 ft/sec ). They are listed in Table 1,
together with 27\/gT~.

Within a distance of about 1/36 of a wavelength from the crest,
many more terms would be required in equation (27) because of the rapid
variation of the velocity, However, in this neighborhood an exact
expression can be obtained., Fxpansion of equation (6) in a power series

and term-by-term integration yield

)2/3 + Bl lw - ie)s/s

. . 8/3
z -~ 1€’ = Bilw - 1€ : )

+ Bolw - j¢ + o (29)

where the B} are various functions of bj and €. The distance from the
bottom to the crest in the z plane is €', Then w - 1€ can be obtained

from equation (17) as a function of z - 1€’ by some algebraic manipulation.

The result is

. 3/2
e - lz - ie’) a2

[1 + B - i€’
By 1(3 )

f Bz - 1e)® v ] (50)

where the B} are various functions of the B;. The velocity is then

obtained by differentiation,

q(z) B . - l.6,]1/2 (. . ,v3/l2 s
Ch —Do[ nerru B ) e o l’f] + m{L.—‘E—} . ] , (31)



where the D are various functions of b; and € given in equations (36),
(37), and (38).

Transformation to a stationary coordinate system can be accom-
plished by adding 1 to the complex veloecity and putting x = x' - Cot. The

introduction of polar coordinates, as is shown in Figure 2, yields

ana

1 x, "Cot

The radius vector from the crest, r,

is measured in units of the wave-

length, The angle ¢ between the

(=C¢, €)

vertical and r is measured positive

counterclockwise, The distance f{rom

the crest to the ocean bottom meas-

ured in units of the wavelength is

just €, Figure 2
The velocity compenents are given by equation {2). They are
U - _ 1/2 o 3/2
Ce 1 Dot [@5 Ccos B - 2D, r cos 20 + 2 Dgr3 cos %%} (34)
and



r - Dorl/z[%g sin % - 20,r%/? sin 2a + N2 D,r? cos
o]
where
1/2
Do = 1.5 ('% EFJS/Q }\O »
Joo 3 Co
D, - 1.2 [E gpte/z (1, d Ag/z ,
and
Do =4.5{——2—EF]3 E——l.]_-+ﬁJ —l{._];_+_11;+_g-l
' 3 ] 2513 F 4118 3F F 8
The abbreviations used in eguations (36), (37),
lisfed below:
J = (1 - Be-—nte + 58—125 - 7e""24€ + 9e~4_06 _ lle—
K = (1 - 27e7%€ + 125e712€ - 34Be 24€ 4 720 40E€
E o= (J)"/®
F =1 +a'cosh 2¢ + b'cosh 4¢ + c'cosh fe
G = -2(a'cosh 2¢ + 4b’'cosh 4e€ + Oc’cosh 6¢€)
HF = 2(a’sinh 2¢ + 2b’'sinh 4€ + Z¢'sinh fe)
a' = 2b,e”2¢€
b' = 2bye” %€
c' = 2bge 8¢

The functions D;, D,, and Dy are given in Table 3.

in appropriate units,

and (%8) are

[SRCN 3

)
1331e”90¢)

Ao 1s the wavelength



DISCUSSION OF RESULTS

The current engineering practice for prediction of properties
of waves is summarized by Bretschneider.® The material presented there
is partially empirical and partially theoretical, with various ingenious
extrapolation techniques being used for predictions in regions where there
are no available data,

Figures 3, 4, and 5 give a compariscn between certain wave
properties calculated here and those given by Bretschneider., The calculated
values are in all cases shown as solid lines, and the values which have
been read off Bretschneider's charts are shown as dashed lines. A considera-
tion of the figures indicates that there is small reason to prefer either as
a representation of the experimental data.

The case of very large depth was investigated by putting € = 10
into the egquations resulting from equation (23). The solutions were the same
as in the case € = 3, within an accuracy of three significant figures. There
are three other numerical treatments c¢f the problem, those of Michell,”®
Havelock,s and Yamada. ' The ratios Cg/gk (the dimensionless wave velocity)

and H/\ (the steepness) are compared in Table 4,

TABLE 4
- ) —]i:_ﬁigheI[—fT_ Have lock i Yamada“_l Chappelear
| ‘
cirgn | oo | o.or | om0 | 01913
Fli,_/}x 0.142 L_ 0. |_4_l_8_‘_L__O. |4|2_ [ _O_._|428

The wave corresponding to the smallest value of € can be compared

. . 5 . ; Z == 4
tc the highest solitary wave; this has been investigated by McCowan and
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TABLE 5

| McCowan Yaméda Chappelear
—+— J|,_~;__T‘ -
!

Colgd | 2 1.999 l.602

H/d | 0.780 | 0.8234 |  0.8696

Yamada, > In Table 5 the dimensionless ratios Cg/gH and H/d are listed
for comparison, It is apparent that the value ¢ = 0.2 is still rather far
from the solitary wave,

As has been pointed out by Bretschneider, it is rather surprising
that the bresking index curve calculated here lies above that predicted for
small values of d/TQ. His curve in this region is taken dairectly from the
modified solitary wave theory of Munk, and it might well be argued that the
highest wave in any depth should be the (modified) solitary wave.

At least three different explanations might be advanced for the
apparent anomaly, First, there is of course no mathematical reason why
there cannot be two solutions to the equations of hydrodynamics for waves
in this region. In this case the difference is real, and some additional
theoretical or experimental investigation of the question of stability is
necessary, oecond, there is a possibility that either theory is wrong in
this region, The modified solitary wave then could associate the wrong
wavelength with the wave, The waves in question are for the smallest three
values of €, for which the equations are the least accurate, Although the
final answers should be correct to two significant figures, some chance
collection of numerical errors might have brought this result about.

Finally, the functional forms chosen to represent the velocity might not be
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applicable, This is indicated by the fact that the two waves corresponding
to the smallest values of € have very small secondary humps., Furthermore,
the numerical determination of 6,, b2, b5, and g was rendered more diffi-
cult by an appsrent lack of stability of the equations to the iterative
scheme used in their solution; that is, it was necessary to resort to
averaging of successive iterations to control the oscillations. Even when
the averaging procedure was used, it was not possible to solve the
equations with unlimited accuracy, Since such oscillations are not
normally present in well-formulated physical problems, it might be
concluded that the problem is not formulated correctly. Whether any of

these proposed explanations is correct cannot be answered here,
COMMENTS AND CONCLUSIONS

A brief discussion of the use of the tables should clarify the
procedure necessary to calculate approximately the properties of any
particular wave, It i1s first necessary to select the depth and the period.
Then the wave height, the wavelength, and € are found by interpolation on
Table 1. The profile is obtained by interpolation on € in Table 2. The

velocity components are calculated from the equations given below.

J
vu(xl - cOti.y) - : C
; o]

n cos n{kx' - wt)cosh nky , (39)
Co c
n=1
vix' - Cot,y < C
COO 22 =/ Ef sin n(k@’ -~ wt)sinh nky . (40)
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We have put

w = 27/T (41)

and
CO = >\/T 1} (42)

Equations (41) and (42) follow directly from equation (36) by omitting
the term corresponding to the uniform flow (Co) and replacing x by
x'" - ct.

At the crest, the velocity vector has the components (Co,0),
as is indicated by equation (39). For distances from the crest less than
about 1/36 a wavelength, equations (34) and (35) are used to calculate
the velocity components. Equations (32) and (33) yield r and a, and Dg,
Dy, and D, are obtained from Table 3. The ratio of €' to € is found in
Table 1,

It would be very interesting to demonstrate experimentally that
the wave predicted here theoretically exists, It is unlikely that con-
ditions would occur at sea so that this would be possible: however,
experiments in a wave tank should in principle be able to produce these
waves., If not, some insight would be gained into how to modify our
theoretical procedure to predict this limitation.

Havelock found an extension of the procedure of Michell for
connecting the highest waves with the finite amplitude waves of Stokes,

He employed the same functional form to represent the velocity, but

satisfied Bernoulli's equation on a line ¥ = 8, where |8 < lel,
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The branch points in the velocity were put above the wave. The velocity
potential could then be expanded in a Fourier series convergent everywhere
within the wave; the results for coefficients of the various terms agreed
with those coefficients calculated by the procedure of Stokes within the
limit of accuracy of the calculations,

The procecure of Havelock was applied to the waves predicted
here, but the resulting formulas were so formidable that they were useless
for practical purposes. It is suggested that the results of Dee,10 who
has extended the Stokes-Struik theory to the fifth order of approximation,
be used for calculating all except the highest waves,

There seems to be no convenient way to estimate the errors made
in the various approximations, since the correct solution is not available,
The solutions would be exact if they did not violate the Bernoulli theorem
to a certain extent, As a measure of the error, it is convenient to employ
the ratio of the maximum fluctuation in the energy due to the errors to the

difference in potential energy between crest and trough.

Mgy + 3+ 1)
gH

Measure of error ~

This measure of the error would be zero for the exact solution, and
presumably could be improved by addition of terms in the series, FE is
given as a function of € in Table 1,

An inspection of Table 2, which gives the profile, indicates that
the four smallest waves have a slight secondary crest in the position

expected for the trough. The rise is at most about 5 percent of the total
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wave height., It is reasonable to assume that this effect is not real but
is due to the omission of higher harmonies from the assumed form for the

complex velocity, equation (6), The measure of error, E, is also largest

for these waves, although perhaps not excessive except for the two smallest

values of €,
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APPENDIX 1

The Bernoulli theorem is usually written

20

lg(w)|® + g Im z(w) = const, (1-1)

on the free surface, w = ¢ - 1€, The partial derivative of equation

(I-1) with respect to ¢ is

lg(d + ie) ] gg lg(p + ie)] + g4§;(¢,e) -0 . (1-2)
Now
dy - 1 °p_ __1 _
AP A P e

Substitution of equation (I-3) into equation (I-2) yields

g% lg(d + ie)|* = +ag Im g(b + i€) . (I-4)
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APPENDIX II

It is assumed that the largest term in an expansion of g (w)

about the crest is proporticnal to wb.

qglw) = Aw® . (11-1)

Then an integration gives

z = - . (I1-2)

The origin of coordinates may be shifted to the crest. Then

the free surface is w = ¢, The Bernoulli theorem yields

|A|4§% % + % TmA -0 | (11-3)

In order to satisfy this equation, it is necessary that

5 = % . (II-4)
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